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1 .  PURPOSE AND SCOPE 

The purpose of th i s  report i s  to present the resul ts  o f  the postfl ight 

analysis of the Ascent Propulsion System (APS) performance dur ing  the Apol l o  

15 Mission. I t  i s  a supplement to  the Apollo 15 Mission report. 

nation of the APS steady-state performance under actual f l i gh t  environmental 

conditions was the primary objective of the analysis. Included i n  the report 

are such information as required t o  provide a comprehensive description 

of APS performance during the Apollo 15 Mission. 

Determi- 

Major add i t ions  and changes t o  the preliminary resul ts  presented in the 

mission report (Reference 1 )  are l is ted below. 

1 )  

2 )  

3 )  

4) 

Calculated performance values f o r  the APS lunar l i f t o f f  b u r n .  

Discussion of analysis techniques, problems and assumptions. 

Comparision of postflight analysis and pref l ight  prediction. 

Reaction Control System (RCS) duty cyc e included i n  the APS 

performance analysis. 

5)  Transient performance analysis. 

6 )  The APS propel 1 ant consumption values presented in the prel iminary 

postfl ight evaluation have been revised as shown in Table 2. 

I 
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2. SUMMARY 

The duty  c y c l e  f o r  t h e  LM-10 APS cons is ted  o f  two f i r i n g s ,  an ascent 

s tage l i f t o f f  from the  l u n a r  sur face and t h e  Terminal  Phase I n i t i a t i o n  (TPI)  

burn.  

s a t i s f a c t o r y .  

however, a l l  i n d i c a t i o n s  were t h a t  t he  bu rn  was nominal .  

APS performance f o r  t h e  f i r s t  f i r i n g  was eva lua ted  and found t o  be 

No p r o p u l s i o n  da ta  were rece ived  f rom t h e  second APS burn; 

Engine i g n i t i o n  f o r  t h e  APS l u n a r  l i f t o f f  burn occur red  a t  t h e  Apo l l o  

elasped t ime  (AET) o f  171 :37:23.2 (hours:minutes:seconds). 

was 430.9 seconds. 

Burn d u r a t i o n  

Average s teady-s ta te  engine performance parameters f o r  t h e  burn a re  

as fo l l ows :  

Th rus t  - 3540 l b f  

I s p  - 311.7 sec 

M i x t u r e  Ra t io  - 1.610 

A1 1 performance parameters were we1 1 w i t h i n  t h e i  r LM-10 3-sigma 1 i m i  t s  . 
Ca lcu la ted  t h r o a t  e ros ion  a t  engine c u t o f f  f o r  t he  LM-10 APS was approx- 

i m a t e l y  3 percent  g r e a t e r  than p r e d i c t e d .  

2 



3. INTRODUCTION 

J 

The APS du ty  cyc le  f o r  t h e  Apo l lo  15 Miss ion  cons is ted  o f  a l u n a r  

l i f t o f f  burn and a Terminal  Phase I n i t i a t i o n  (TPI )  burn.  To ta l  burn dur-  

a t i o n  f o r  t he  two f i r i n g s  was 433.5 seconds. The A p o l l o  15/LM-lO/APS was 

equipped w i t h  Rocketdyne Engine S/N 0014C. APS engine performance char-  

a c t e r i z a t i o n  equat ions used i n  p r e f l i g h t  analyses and as a bas is  f o r  t h e  

pos t f  1 i ght  eva l  u a t i  on are found i n  Reference 2. 

da ta  used i n  the  de te rm ina t ion  of performance are f rom Reference 3. 

Phys ica l  c h a r a c t e r i s t i c s  o f  t h e  engine and feed system are presented i n  

Table 1. 

Engi ne acceptance t e s t  

I g n i t i o n  t ime f o r  t h e  i n i t i a l  APS f i r i n g  was 171:37:23.2 AET. Engine 

c u t o f f  was commanded a t  171 :44:34.1 AET f o r  an APS burn d u r a t i o n  o f  430.9 

seconds. Loss of s i g n a l  (LOS) occurred f o l l o w i n g  engine shutdown f o r  t h e  

l u n a r  l i f t o f f  burn a t  approximately 171:51 AET as t h e  v e h i c l e  went beh ind  

the  moon. The second APS burn was t h e  2.6 Second Terminal  Phase (TPI )  

maneuver. APS engine i g n i t i o n  time f o r  the  T P I  manuever was 172:29:40 

AET, approx imate ly  38 minutes a f t e r  LOS. Exact da ta  concern ing ascent 

stage main engine i g n i t i o n  and c u t o f f  t imes and t h e  assoi ca ted  v e l o c i t y  

changes are shown below: 

I g n i  ti on Engine Cuto f f  Burn Time V e l o c i t y  (1  ) 
Burn H r : m i  n :sec.  Hr:min:sec. Seconds Change, f t / s e c  

Lunar L i f t o f f  171:37:23.2 1 71 : 44 : 34.1 430.9 6059 
TP I 172:29:40 ,O 172:29 :42.6 2.6 72.7 

( 1 )  Reference 1 

3 



4. STEADY-STATE PERFORMANCE ANALYSIS 

Analysis Technique 

Determination of APS steady-state performance d u r i n g  the luna r  o r b i t  

insertion burn was the primary objective of the LM-10 postfl ight analysis. 

The insertion b u r n  duration was 430.9 seconds, engine on t o  engine off 

command. In addition to  the orbital insertion maneuver the APS was used 

t o  perform the Terminal Phase Ini t ia t ion ( T P I )  bu rn .  Burn  duration for  

T P I  was approximately 2.6 seconds. 

are  available from the TPI burn since the spacecraft was behind the moon. 

No propulsion system telemetry d a t a  

The APS postflight analysis was conducted using the Apollo Propulsion 

Analysis Program ( P A P )  as the primary computational t o o l .  

the Ascent Propulsion Subsystem Mixture R a t i o  Program (MRAPS) was used 

i n  a n  i t e ra t ive  technique with PA? t o  determine the vehicle propellant 

mixture r a t io .  

operation of the MRAPS program and the underlying theory which i t  im- 

A d d i t i o n a l l y ,  

Reference 4 presents a detailed explanation o f  the 

p l  emen t s  . 
An i n i t i a l  estimate of the ascent stage weight a t  l u n a r  l i f t o f f  of 

10915 lbm was obtained from Reference 5.  

spacecraft weight less APS propellants) was considered t o  be constant 

th roughou t  the f i r ing  except f o r  a 0.03 lbiii/sec overboard f lowrate  

Ascent stage damp weight ( to t a l  

n 

which accounts for  ablative nozzle erosion. 
rc 

RCS propellant usage and thrust  histories were obtained from an  analvsis 

of the RCS bi-level measurements. 

consuniption during the ascent b u r n  was from the APS tanks. 

5 percent of the RCS usage, - 3  lbm, was from the RCS tanks following 

the closing of the APS/RCS interconnectvalvps. 

Approximately 95 percent of the RCS 

The remainincl 

Table 2 presents a summar.v 
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of propellant usage, including RCS consumption, from the APS tanks d u r i n g  

the ascent burn .  

equations from Reference 6 ,  adjusted by measured density data fo r  the 

LM-10 f l i g h t  g i v e n  i n  the Spacecraft Operational Data Book (SODB) , 

Propellant densities used i n  the program were based on 

Reference 7 .  

ment data and were 68.25"F and 69.75OF, respectively. These temperatures 

Oxidizer and fuel temperatures were taken from f l igh t  measure- 

were considered t o  be constant throughout the segment of burn  analyzed. 

The following f l i gh t  measurement da ta  were used i n  the  analysis of the LM-10 

APS burn :  engine chamber pressure, engine interface pressures , vehicle 

thrust acceleration, propellant t a n k  bulk temperatures, helium regulator 

ou t le t  pressures , engine on-off commands, he1 i u m  t a n k  pressure measurements , 
and RCS thruster solenoid bi-1 eve1 measurements. Measurement numbers and 

data pertinent t o  the above measurements, with the exception o f  RCS 

bi-levels , are given in Table 3 .  Plots o f  measurement d a t a  versus time are  

presented in the appendix to th i s  report. 

Flight Data Analysis and Results 

A 400-second segment of the APS lunar l i f t o f f  burn  was selected t o  

be analyzed for  the purpose of determining steady-state performance. 

segment of the b u r n  analyzed begins a t  171:37:35.0 AET, 11.8 seconds 

a f t e r  ignit ion,  and ends a t  171:44:15.0 AET, 19.1 seconds prior t o  cutoff. 

The periods immediately following ignition and immediately prior t o  engine 

cutoff are not included in order t o  minimize any errors  result ing from 

d a t a  f i l t e r ing  spans which included the start  and shutdown transients.  

engine propellant cornsumption during the burn  i s  presented in Table 2 .  

Propellant consumption from engine on command t o  the start  of the steady- 

s t a t e  analysis segment and from the end of the steady-state analysis t o  

The 

APS 
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t h e  beg inn ing  o f  chamber p ressure  decay was e x t r a p o l a t e d  from s teady-s ta te  

a n a l y s i s  r e s u l t s .  

The pr imary engine performance de terminat ions  made d u r i n g  t h e  LM-10 

A l l  average values a r e  over  t h e  400- p o s t f l i g h t  ana lys is  a r e  as f o l l o w s :  

second p e r i o d  o f  s teady-s ta te  a n a l y s i s .  

1 )  

2) 

3) 

4)  

Average APS s p e c i f i c  impulse was 311.7 seconds. 

Average APS m i x t u r e  r a t i o  was determined t o  be 1.610. 

Average APS t h r u s t  was 3540 l b f .  

Engine t h r o a t  e r o s i o n  was 3 p e r c e n t  g r e a t e r  than p r e d i c t e d  a t  400 

seconds from i g n i t i o n .  

An e x t r a p o l a t i o n  of t h e  APS s teady-s ta te  a n a l y s i s  t o  i n c l u d e  t h e  e n t i r e  

burn,  w i t h  t h e  except ion  o f  i g n i t i o n  and shutdown t r a n s i e n t s ,  r e s u l t e d  i n  

an average s p e c i f i c  impulse, t h r u s t ,  and m i x t u r e  r a t i o  o f  approx imate ly  

the  same values as t h e  400 second burn segment. 

g r e a t e r  than p r e d i c t e d  w i t h  t h e  average engine s p e c i f i c  impulse exceeding 

t h e  p r e d i c t e d  average v a l u e  by 1 .7  seconds. 

LM-10 APS performance was 

The general s o l u t i o n  approach used i n  t h e  LM-10 f l i g h t  e v a l u a t i o n  was 

t o  c a l c u l a t e  t h e  v e h i c l e  we igh t  (inc1ud;'ng p r o p e l l a n t  loads)  f o r  t h e  beg inn ing  

o f  t h e  burn  segment used t o  analyze s teady-s ta te  performance and then a l l o w  

t h e  PAP t o  vary  t h i s  we igh t  and o t h e r  s e l e c t e d  performance Fararneters ( s t a t e  

v a r i a b l e s )  i n  o rder  t o  achieve an acceptable da ta  match. 

were made us ing  t h e  p r e v i o u s l y  d iscussed APS engine c h a r a c t e r i z a t i o n  model 

d r i v e n  by engine i n t e r f a c e  pressures.  

ment data were f i r s t  f i l t e r e d  w i t h  a s l i d i n g  a r c  f i l t e r  and then, because of  

excess ive d i s t o r t i o n ,  these data were f u r t h e r  smoothed us ing  a f i f t h  degree 

curve f i t .  

The PAP s i m u l a t i o n s  

Raw f l i g h t  i n t e r f a c e  pressure  measure- 

S i m u l a t i o n  of  RCS a c t i v i t y  was accomplished w i t h  a model t h a t  was 

6 
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developed from individual thruster  "on" time. T h i s  technique has been used 

on a l l  preceding APS reconstructions and i s  fu l ly  discussed i n  Reference 8. 

In i t i a l  PAP simulation results based on the i n p u t  data outlined i n  

the beginning of t h i s  section indicated the predicted throat erosion was 

less  than t h a t  required to match f l i gh t  data. A revised throat erosion 

curve was calcult,ted us ing  the p a r t i a l  derivatives of t h r o a t  area w i t h  

respect i:o acceleration. The revision of the throat area curve included 

increasing the i n i t i a l  value to  16.432 i n 2 ,  about  0.3 percent larger than 

the preflight value. This technique has been used dur ing  previous APS 

postf l ight  reconstructions and has yielded good resul ts .  

t h i s  calculated throat area curve i n  the analysis program resulted in an 

excellent acceleration match with a near zero mean and no s ignif icant  slope. 

The derived throat erosion was 3 percent greater than predicted a t  approx- 

imately 400 seconds a f t e r  ignit ion.  Figure 1 shows the calculated throat 

area curve in comparison with the predicted curve for LM-10. 

The inclusion of 

An APS chamber pressure error model was derived from postf l ight  d a t a  

(Reference 9 ) .  

chamber pressure measurement ( G P  2010), this  model was used fo r  the f i r s t  

time i n  the LM-10 A P S  postflight analysis. 

values t o  chamber pressure f l i gh t  data achieved u s i n g  the error  model 

was good. The use of the error model allows the uncertainty associated with 

the chamber pressure measurement t o  be s ignif icant ly  reduc6d thus decreasing 

the overall uncertainty on the final m:nimum variance solution. A small 

(-.1 psia) chamber pressure measurement bias was determined by the f inal  

PAP solution. 

bias and the previously discussed d r i f t  model. 

I n  order t o  compensate f o r  a suspected d r i f t  f n  the APS 

The comparison of reconstructed 

The residual match shown in Figure 3 incorporates bo th  this 

7 



1 Interface pressure measurement biases of approximately -2.0 p s i a  and 

- .7] ps ia  f o r  oxidizer and fue l ,  respectively, were determined from the PAP 

resu l t s .  

seemed to be lower t h a n  expected. 

accuracy fo r  bo th  the oxidizer (GP 1503) and fuel (GP 1501) interface 

pressure measurements. 

I t  was noted during the f l i g h t  t h a t  oxidizer interface pressure 

These biases are well w i t h i n  the measurement 

A vehicle weight reduction of 17 lbm was determined from the PAP re- 

construction. 

l i f t o f f  i s  10898 l b m .  

The principal indicator of the accuracy of the postfl ight recon- 

The best estimate of total  ascent stage weight a t  l u n a r  

struction i s  the matching of calculated and measured acceleration d a t a .  

A measure of the quali ty of the match i s  given by the residual slope and 

intercept d a t a  as shown in Figure 2 .  These d a t a  represent the ordinate 

intercept and the slope of a l inear  f i t  t o  the residual d a t a .  

closer b o t h  these numbers are t o  zero, the more accurate i s  the match. 

The acceleration match achieved w i t h  the LM-10 postfl ight reconstruction 

was very good. 

accurate simulation of actual f l i gh t  performance. 

The 

The LM-10 f l i g h t  reconstruction was, by a l l  indications, an  

Figures 2 through 9 shows the principal performance parameters 

associated w i t h  the LM-10 postfl ight analysis. 

were used as time vary ing  i n p u t  t o  the Propulsion Analysis Program. 

of these measurements, fuel and  oxidizer interface pressure, were used 

as program drivers. The other two, acceleration and chamber pressure, 

Four f l i g h t  measurements 

TWO 

I 

. 

r 

'AS a convention i n  t h i s  report, a negative b i a s  indicates t h a t  measured 
d a t a  wa5 reading less  than  i t s  true value. 
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were compared t o  c a l c u l a t e d  va lues  by t h e  program's minumim v a r i a n c e  tech-  

n ique.  The a c c e l e r a t i o n  and chamber p ressure  measurements a long w i t h  t h e i r  

r e s i d u a l s  (measured da ta  minus c a l c u l a t e d )  a r e  presented i n  F igures 2 and 3 

r e s p e c t i v e l y .  F igures  4 and 5 c o n t a i n  o x i d i z e r  and f u e l  i n t e r f a c e  pressure 

measurement da ta  ( a f t e r  smoothing o f  t h e  raw data)  , t h e  curve f i t s  o f  these 

da ta  i n p u t  t o  t h e  A p o l l o  Propu ls ion  Ana lys is  Program, and t h e  r e s i d u a l s  

between t h e  f l i g h t  da ta  and t h e  c a l c u l a t e d  i n t e r f a c e  pressures.  

s t e a d y - s t a t e  values f o r  t h r u s t ,  s p e c i f i c  impulse, and o x i d i z e r  and f u e l  f l o w -  

r a t e s  a r e  shown i n  F igures 6-9. 

C a l c u l a t e d  

Comparison w i t h  P r e f l i g h t  Performance P r e d i c t i o n  

P r e d i c t e d  performance of t h e  LM-10 APS i s  presented i n  Reference 10. 

The i n t e n t i o n  o f  t h e  p r e f l i g h t  performance p r e d i c t i o n  was t o  s i m u l a t e  

APS performance under f l i g h t  environmental  c o n d i t i o n s  f o r  t h e  M i s s i o n  J-1 

d u t y  c y c l e .  No at tempt  was made i n  t h e  p r e f l i g h t  p r e d i c t i o n  t o  s i m u l a t e  

RCS o p e r a t i  on. I 

Table 4 presents  a summary o f  a c t u a l  and p r e d i c t e d  APS p e r f o m a n c e  

d u r i n g  the  ascent  burn.  

p o s t f l i g h t  r e c o n s t r u c t i o n  i s  g r e a t e r  than had been p r e d i c t e d  b u t  i s  s t i l l  

w e l l  w i t h i n  t h e  3-sigma l i m i t s  o f  k3.5 seconds presented i n  Reference 10. 

Comparisons o f  p r e d i c t e d  and recons t ruc ted  va lues f o r  s p e c i f i c  impulse, 

t h r u s t ,  and m i x t u r e  r a t i o  a r e  presented i n  F i g u r e  10 a long w i t h  r e l a t e d  

3-sigma d i s p e r s i o n s .  The v a r i a t i o n s  i n  f l i g h t  s p e c i f i c  impulse, t h r u s t  and 

m i x t u r e  r a t i o  were w i t h i n  t h e i r  r e s p e c t i v e  3-sigma d i s p e r s i o n s .  

Engine s p e c i f i c  impulse determined by t h e  

Engine Performance a t  Standard I n t e r f a c e  Cond i t ions  

Expected APS engine f l i g h t  performance was based on an engine char-  

a c t e r i z a t i o n  which u t i l i z e d  data ob ta ined d u r i n g  engine and i n j e c t o r  

9 



acceptance t e s t s .  

t o  be separated from v a r i a t i o n s  induced by f e e d  system, p r e s s i r r i z a t i o n  

system, and p r o p e l l a n t  temperature v a r i a t i o n s  , t h e  acceptance t e s t  da ta  

a r e  a d j u s t e d  t o  a s e t  of s tandard i n t e r f a c e  c o n d i t i o n s ;  thereby  p r o v i d i n g  

a common basis  f o r  comparison. 

f o l l o w s :  

I n  o r d e r  t o  a l l o w  a c t u a l  engine p e r f o m a n c e  v a r i a t i o n s  

Standard i n t e r f a c e  c o n d i t i o n s  a r e  as 

O x i d i z e r  i n t e r f a c e  pressure,  p s i a  170. 

Fuel i n t e r f a c e  pressure,  p s i a  170. 

O x i d i z e r  i n t e r f a c e  temperature,  OF 70. 

Fuel  i n t e r f a c e  temperature,  OF 70. 
3 O x i d i z e r  d e n s i t y ,  l b m / f t  90.21 

I 

Fuel d e n s i t y  , 1 bm/f t’ 56.39 

Thrus t  a c c e l e r a t i o n ,  l b f / l h i i  1. 

16.48 2 Throat  area, i n  

A n a l y s i s  r e s u l t s  ( a t  13 seconds f rom i g n i t i o n )  f o r  the  ascent  burn  c o r r e c t e d  

t o  s tandard i n t e r f a c e  c o n d i t i o n s  and compared t o  acceptance t e s t  va lues a r e  

shown b e l  ow: 

Acceptance T e s t  F l i g h t  Ana lys is  % 

Thrus t ,  l b f  3501. 3538. 1% 

P r o p e l l a n t  M i x t u r e  R a t i o  1.597 1.597 0 7; 

Date R e a l  t s  D i f f e r e n c e  

I 

S p e c i f i c  Impulse, 1 b f  lbm -sec 310.0 312.1 0.7% 

I Reduct ion o f  engine performance t o  s tandard i n t e r f a c e  c o n d i t i o n s  and com- 

p a r i s o n  w i t h  acceptance t e s t  va lues shows good agreement w i t h  t h e  l a r g e s t  

d i f f e r e n c e  being i n  t h e  engine t h r u s t .  

s tandard d e v i a t i o n s  of acceptance t e s t  va lues .  

A l l  d i f f e r e n c e s  a r e  w i t h i n  two 

10 



5. PRESSURIZATION SYSTEM 

Hel ium U t i l i z a t i o n  

The h e l i u m  s to rage tanks were loaded t o  a nominal 13.2 lbm. There was 

no i n d i c a t i o n  o f  leakage from t h e  he l ium b o t t l e s  d u r i n g  t h e  m i s s i o n  and 

c a l  c u l a t e d  usage agrees we1 1 w i t h  a n a l y t i c a l  p r e d i c t i o n s .  

He1 i um Regulator  Performance 

He1 i um r e g u l a t o r  performance was approx imate ly  as p r e d i c t e d .  The C1 ass 

No s i g n i f i -  I pr imary  r e g u l a t o r  c o n t r o l l e d  hel ium f l o w  throughout  t h e  burn.  

c a n t  o s c i l l a t i o n s  i n  r e g u l a t o r  o u t l e t  pressure were noted. 

O x i d i z e r  I n t e r f a c e  Pressure Dur ing Coast 

A lower  than expected (-3 p s i )  APS o x i d i z e r  i n t e r f a c e  pressure was noted 

d u r i n g  the  t r a n s l u n a r  coas t  phase o f  t h e  A p o l l o  15 Miss ion .  

n e g a t i v e  o x i d i z e r  i n t e r f a c e  pressure measurement b i a s  p r e v i o u s l y  d iscussed 

would account f o r  2 p s i  o f  t h e  d i f f e r e n c e .  Furthermore, t h e  l o n g e r  p e r i o d  

f rom launch t o  p r e - f i r i n g  p r e s s u r i z a t i o n ,  i .e . ,  171 hours as opposed t o  140 

hours f o r  LM-6 and LM-8 cou ld  account f o r  an a d d i t i o n a l  d i f f e r e n c e .  The 

observed pressure d i f f e r e n c e  i s ,  t h e r e f o r e ,  n o t  b e l i e v e d  t o  be s i g n i f i c a n t .  

However, t h e  

Hel ium M a n i f o l d  Pressure Dur ing Coast 

A g r e a t e r  than expected pressure decay r a t e  i n  t h e  he l ium m a n i f o l d  was 

no ted  d u r i n g  t h e  A p o l l o  15 t r a n s l u n a r  c o i s t .  

t h e  f l i g h t  progressed. 

m a n i f o l d  p r i o r  t o  APS f i n a l  p r e s s u r i z a t i o n  i n  o r d e r  t o  v e r i f y  t h e  i n t e g r i t y  

o f  the  he l ium m a n i f o l d .  

he1 i um r e g u l a t o r  ou t l  e t  pressure (GP 0025) measurement was approx imate ly  

The decay r a t e  decreased as 

A pressure o f  10 p s i a  i s  r e q u i r e d  i n  t h e  he l ium 

The hel ium raan i fo ld  pressure,  as measured by t h e  

11 



54 p s i a  j u s t  prfor t o  f i n a l  p r e s s u r i z a t i o n .  

t h a t  t he  most l i k e l y  source o f  leakage was t h e  he l ium so leno id  va lves .  

These va l ves  have been changed on LM-11 and no subsequent d i f f i c u l t i e s  

a r e  expected. 

I t  was subsequent ly determined 

- 
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6. PROPELLANT LOADING AND USAGE 

APS propellant loads for the LM-10 Mission were 3225.6 lbm of oxidizer 

and 2011.4 lbm of fuel .  Of these amounts 36.0 lbm of oxidizer and 15.9 lbm 

of fuel a re  considered t o  be unusable or  consumed d u r i n g  t rans ien t  engine 

operation. 

3189.6 lbrn and 1995.5 lbm for oxidizer and fuel , respectively. Propellant 

density samples taken a t  the time of loading showed an oxidizer density of 

The amounts of nominally deliverable propellants a r e ,  therefore,  

1.4819 gm/cc a t  4'C and a fuel density of 0.8979 gm/cc a t  25'C. Both 

densi t ies  were a t  a pressure of one atmosphere. 

Since a l l  RCS propellant usage was from the RCS tanks pr ior  t o  lunar 

l i f t o f f ,  the APS propellant loads a t  APS iqnit ion were 3225.6 lbm of oxidizer 

and 2011.4 1 bm of fuel .  Except for the l a s t  20 seconds of b u r n ,  a l l  RCS 

ccnsumption d u r i n g  the ascent burn  was through the APS/RCS interconnect. 

Total propellant usage from the APS tanks i s  presented in Table 2.  The APS 

consumption during the  lunar l i f t o f f  burn  was 2978 lbm, oxidizer and 1855 lbm, 

fue l .  Total RCS consumption, t h r o u g h  the APS/RCS interconnect,during the 

APS f i r s t  burn  was 63 lbm. The TPI maneuver consumed as estimated 19 lbm 

of oxidizer and 1 2  1 bm of fue l ,  A total  o f  186 lbm o f  oxidizer and 124  lhm 

of fuel remained onboard a t  APS second burn  cutoff.  

13 



7. ENGINE TRANSIENT ANALYSIS 

An analysis of the s t a r t  and shutdown transients  was performed with 

the primary intention of determining t ransient  to ta l  impulse. Figures 11 

and 12 are  traces of engine chamber pressure, measurement GP2010, during 

start  and shutdown of the lunar l i f t o f f  b u r n ,  repectively. 

available from the TPI  burn.  

No data were 

The time from ignition signal t o  90 percent steady-state thrust was 

0.345 seconds, well within the specification l imit  for  unprimed s t a r t s  

of 0.450 seconds. Total s t a r t  transient impulse was 27 lbf-sec. The  

chamber pressure overshoot exceeded the upper l imit  of the measurement 

range (150 psia);  however, there were no indications of rough combustion 

or other abnormal performance. 

Total impulse from engine cutoff signal t o  10 percent thrust was 300 lbf- 

sec. 

within the revised specification l imit  of 0.500 seconds (Referencell). 

Time from cutoff signal to  10 percent thrust  was 0.19 seconds which i s  

0 



8. CONCLUS IONS 

The LM-10 APS f l i gh t  reconstruction showed the APS performance to  he 

Satisfactory.  

f l i gh t s  were noted. 

A s t a t i s t i c a l  study of the differences between APS predicted and post 

No malfunctions o r  anomalies w i t h  possible impact on future 

f l i g h t  reconstructed specific impulse i s  contained in Reference 9. The 

resu l t s  of the LM-1O/APS analysis were added t o  the existing data shown 

i n  Reference 9,  and from a study (Reference 12) o f  the expanded data s e t  

i t  i s  concluded t h a t  no change in the APS specif ic  impulse nrediction 

techniques are warranted a t  t h i s  time. 

by incorporating the resul ts  of future APS f l i g h t  analyses as they become 

avai  1 ab1 e. 

This resu l t  will be verified 
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TABLE 1. LM-1O/APS ENGINE AND FEED SYSTEM PHYSICAL CHARACTERISTICS 

Engine No. Rocketdyne S/N 001 4C 

I n j e c t o r  No. 

I n i t i a l  Chamber Th roa t  Area ( i n  ) 2 
Rocketdvne S/N 4097734 

16.378 
(4)  

Nozzle E x i t  Area ( i n  2 ) 749.508 

I n i t i a l  Expansion R a t i o  45.763 

I n j e c t o r  Resistance ( 1  bf-sec 2 /lbm-ft 5 ) @  

t ime  zero  and 7OoF 

O x i d i z e r  

Fuel 

12420.7 

19886.7 

Feed System 

T o t a l  Volume (Pressur ized ,  Check Valves 

t o  engine i n t e r f a c e ) ( f t  3 ) (2) 

Oxi d i  zer  36.95 

Fuel 37.00 

Resistance, Tank Bottom t o  Engi ne I n t e r -  

f ace  ( l b f - sec2 / lbm- f t5 )  a t  70°F ( 3 )  

Oxi d i  zer  2459.52 

Fuel 4065.12 

Rocketdyne Log Book, "Acceptance T e s t  Data Package f o r  Rocket Engine 
Assembly-Ascent LM-Part No. RS000580-001-04, S e r i a l  No. 0014, I' 

NASA Memornadum EP23-46-69 "Propel 1 an t  Load Parameters f o r  t h e  DPS 
and APS o f  LM-5 th rough LM-9 and t h e  Est imated Parameters f o r  LM-10 
and Subsequent,'' f rom EP/Chief, Propu ls ion  and Power D i v i s i o n  t o  
PD/Chief, Systems Engineer ing D i v i s i o n .  

8 J u l y  1969 

GAC Memorandum LMO-271-844, "A/S Hydrau l i c  Resistance LM 7, 8, 9," 
W .  S a l t e r ,  6 December 1969. 

The i n i t i a l  t h r o a t  area deterii i ined from p o s t f l i g h t  r e c o n s t r u c t i o n  

was 16.432 i n  . 
17 

2 



TABLE 2. PROPELLANT CONSUMPTION FROM APS TANKS 

Propellant Loaded - lbm 
Consumed During Lunar 
Liftoff Burn - lbm 

APS 
RC S 
Total 

Total Propellant Remaining - lbm 

Consumed Dwing TPI Burn - lbm 
APS 

Total Propellant Remaining - lbrn 

Oxi di zer 

3225.6 

2978.3 
42.0 

3020.3 

205.3 

19.3 

186.0 

Fuel 

2011.4 

1854.8 
21 .o 

1875.8 

135.6 

11.5 

124.1 
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TABLE 3. FLIGHT DATA USED IN STEADY-STATE ANALYSIS 

* 

Measurement 
Number 

GP2010P 

GP1503P 

GP1501 P 

GP0025P 

GPO01 8P 

GP1218T 

GPO7 18T 

GH126OX 

GPO001 P 

GP0002P 

GPO041 P 

GPOO42P 

CGOOOl X* 

Descri p t  i on 

Pressure , Thrust Chamber 

Pressure, Engine Oxidizer Inter- 
face 

Pressure, Engine Fuel Interface 

Pressure, Regulator Outlet Mani- 
fold 

Pressure, Regulator Outlet Mani - 
fold 

Temperature, Oxidizer T a n k  Bulk 

Temperature, Fuel Tank Bulk 

Ascent Engine On/Off 

Pressure , He1 ium Supply Tank 
No. 1 

Pressure, Helium Supply Tank 
No. 2 

Pressure He1 i urn Supply Tank 
No. 1 

Pressure, Helium Supply Tank  
No. 2 

PGNS Downlink Data 

*Acceleration determined from P I P A  d a t a .  

19 

Sample Rate 
Range Sampl e/sec 

0-150 psia 200 

0-250 psia 1 

0-250 ps i a  1 

0-300 psia 1 

0-300 psia 1 

20-1 2 0" F 1 

20-1 2 0" F 1 

Off -On 50 

0-4000 1 

0-4000 1 

0-4000 10 

0-4000 10 

Digital Code 50 
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FIGURE 1 4  APS Ntl T A M  
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